- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Alam, Sajid (1)
-
Craig, Erin M (1)
-
Grodsky, Ania (1)
-
Miller, Kyle E (1)
-
Oprea, Francesca (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Onishi, Masayuki (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Onishi, Masayuki (Ed.)Although synaptic evolution has been extensively studied, how axons first arose remains unexplored. Because evolution often occurs by coopting existing features, we review the evolutionary histories, biophysics, and cell biology of cytokinesis, cell crawling, and ciliogenesis to explore the origin of axons. Although we found that cilia and axons are outwardly similar, and growth cones strongly resemble the leading edge of crawling cells, the biophysical processes and the critical proteins that drive each seem weakly linked to axons as a structure. In contrast, the traction force machinery that pulls daughter cells apart during cytokinesis and the cytoskeletal organization of cytokinetic bridges appear to have a one-to-one correspondence to neuronal growth cones and axons. Based on these observations, we propose the hypothesis that axons evolved due to mutations that partially activated cytokinesis in an interphase cell. To rigorously test this hypothesis, we suggest conducting systematic phylogenetic analysis of the genes essential for each process, paired with molecular genetic studies in which critical genes are systematically disrupted. Doing so will provide a framework for understanding the relationship between diverse cellular processes, the early evolution of neurons, and insights that could potentially assist in treating cancer and promoting neuronal regeneration.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
